ε-Approximate Coded Matrix Multiplication is Nearly Twice as Efficient as Exact Multiplication

Authors

Profile
Haewon
Jeong
Carnegie Mellon University

Abstract

We study coded distributed matrix multiplication from an approximate recovery viewpoint. We consider a system of P computation nodes where each node stores 1/m of each multiplicand via linear encoding. Our main result shows that the matrix product can be recovered with ε relative error from any m of the P nodes for any ε > 0. We obtain this result through a careful specialization of MatDot codes --- a class of matrix multiplication codes previously developed in the context of exact recovery ε=0). Since prior results showed that MatDot codes achieve the best exact recovery threshold for a class of linear coding schemes, our result shows that allowing for mild approximations leads to a system that is nearly twice as efficient as exact reconstruction. For Entangled-Poly codes --- which are generalizations of MatDot codes --- we show that approximation reduces the recovery threshold from p^2 q + q -1 to p^2q, when the input matrices A, B are split respectively in to a p *q and q * p grids of equal-sized submatrices.