Hybrid Encryption in Correlated Randomness Model

Authors

Profile
Reihaneh
Safavi-Naini
University of Calgary
Profile
Setareh
Sharifian
University of Calgary

Abstract

A hybrid encryption scheme uses a key encapsulation mechanism (KEM) to generate and establish a shared secret key with the decrypter, and a secret key data encapsulation mechanism (DEM) to encrypt the data using the key that is established by the DEM. The decrypter recovers the key using the ciphertext that is generated by the KEM, and uses it to decrypt the ciphertext that is generated by the DEM. We motivate and propose hybrid encryption in correlated randomness model where all participants including the eavesdropper, have access to samples of their respective correlated random variables. We define information-theoretic KEM (iKEM), and prove a composition theorem for iKEM and DEM that allows us to construct an efficient hybrid encryption system in correlated randomness model, providing post-quantum security. The construction uses an information-theoretic one-way secret key agreement (OW-SKA) protocol that satisfies a new security definition, and a one-time symmetric key encryption system that can be implemented by XORing the output of a (computationally) secure pseudorandom generator with the message. We discuss our results and directions for future work.

Paper Manuscript