Moment Generating Function of the AoI in Multi-Source Systems with Computation-Intensive Status Updates

Authors

Image provided by Mohammad Moltafet
Mohammad
Moltafet
University of Oulu
Profile
Markus
Leinonen
University of Oulu
Profile
Marian
Codreanu
Linkoping University

Abstract

We consider a multi-source status update system in which status updates are transmitted as packets containing the measured value of the monitored process and a time stamp representing the time when the sample was generated. The packets of each source are generated according to a Poisson process and served according to an exponentially distributed service time. We assume that the received status update packets need further processing before being used (hence, computation-intensive). This is mathematically modeled by an additional server at the sink. The sink server serves the packets according to an exponentially distributed service time. We introduce two packet management policies, a preemptive policy and a blocking policy, and derive the moment generating function (MGF) of the AoI of each source under the both policies. In the both policies, the system can contain at most two packets, one at the transmitter server and one at the sink server. In the preemptive policy, a new arriving packet preempts any possible packet that is currently under service regardless of the packet's source index. In the blocking policy, when a server is busy at the arrival instant of a packet, the arriving packet is blocked and cleared. We assume that the same preemptive/blocking policy is employed in both the transmitter and sink server. Numerical results are provided to assess the results.

Paper Manuscript