Polar Codes for Automorphism Ensemble Decoding

Authors

Image provided by Charles Pillet
Charles
Pillet
Huawei Technologies Co. Ltd.
Profile
Valerio
Bioglio
France Research Center, Huawei Technologies Co. Ltd.
Profile
Ingmar
Land
Huawei Technologies France & Paris Research Centre

Abstract

In this paper we deal with polar code automorphisms that are beneficial under low-latency automorphism ensemble (AE) decoding, and we propose polar code designs that have such automorphisms. Successive-cancellation (SC) decoding and thus SC-based AE decoding are invariant with respect to the only known polar code automorphisms, namely those of the lower-triangular affine (LTA) group. To overcome this problem, we provide methods to determine whether a given polar code has non-LTA automorphisms and to identify such automorphisms. Building on this, we design specific polar codes that admit automorphisms in the upper-diagonal linear (UTL) group, and thus render SC-based AE decoding effective. Demonstrated by examples, these new polar codes under AE decoding outperform conventional polar codes under SC list decoding in terms of error rate, while keeping the latency comparable to SC decoding. Moreover, state-of-the-art BP-based permutation decoding for polar codes is beaten by BP-based AE thanks to this design.

Paper Manuscript