Streaming Codes for Handling a Combination of Burst and Random Erasures

Authors

Image provided by Shobhit Bhatnagar
Shobhit
Bhatnagar
Indian Institute of Science
Profile
Biswadip
Chakraborti
INDIAN INSTITUTE OF SCIENCE BANGALORE
Profile
P Vijay
Kumar
Indian Institute of Science & University of Southern California

Abstract

Streaming codes may be regarded as packet-level convolutional codes that guarantee recovery from packet erasures under a strict decoding-delay constraint and are hence relevant to the low-latency objective of many modern communication systems. Past study of these codes has focused on performance over a tractable approximation of the Gilbert-Elliott channel model, known as the delay-constrained sliding window (DCSW) channel model. Under the DCSW channel model, within any sliding window of length w there can either be (i) a burst of at most b packet erasures or (ii) at most a random packet erasures. We study here, an extended version of the first constraint which permits e random erasures in addition to a burst of b erasures. We show that the capacity of this extended DCSW channel is strictly less than that of the corresponding DCSW channel in which b is replaced by b + e. Cyclic codes are easy to implement and are inherently well-suited to burst-erasure recovery. We identify a necessary and sufficient condition on the parity polynomial of an [n, k] cyclic code that allows the code to recover from any burst of n − k − s erasures along with any ρ random erasures, 1 ≤ ρ ≤ s ≤ n − k. We use this result to construct cyclic codes that provide reliable communication over the extended DCSW channel for certain parameters.

Paper Manuscript